GRP78 Upregulation by Atheroprone Shear Stress Via p38-, 2 1-Dependent Mechanism in Endothelial Cells

نویسندگان

  • Ryan E. Feaver
  • Nicole E. Hastings
  • Andrew Pryor
  • Brett R. Blackman
چکیده

Objective—The initiation of atherosclerosis is in part dependent on the hemodynamic shear stress environment promoting a proinflammatory phenotype of the endothelium. Previous studies demonstrated increased expression of ER stress protein and unfolded protein response (UPR) regulator, GRP78, within all vascular cells in atherosclerotic lesions and its regulation in the endothelium by several atherosclerotic stressors; however, regulation of GRP78 by shear stress directly has not been established. Method and Results—Using an in vitro model to simulate human arterial shear stress waveforms, atheroprone or atheroprotective flow was applied to human endothelial cells. GRP78 was found to be significantly upregulated (3-fold) in a sustained manner under atheroprone, but not atheroprotective flow up to 24 hours. This response was dependent on both sustained activation of p38, as well integrin 2 1. Increased GRP78 correlated with the activation of the ER stress sensing element (ERSE1) promoter by atheroprone flow as a marker of the UPR. Shear stress regulated GRP78 through increased protein stability when compared to other flow regulated proteins, such as connexin-43 and vascular cell adhesion molecule (VCAM)-1. Increased endothelial expression of GRP78 was also observed in atheroprone versus atheroprotective regions of C57BL6 mice. Conclusions—This study supports a role of the hemodynamic environment in preferentially inducing GRP78 and the UPR in atheroprone regions, before lesion development, and suggests a potential atheroprotective (ie, prosurvival), compensatory effect in response to ER stress within atherosclerotic lesions. (Arterioscler Thromb Vasc Biol. 2008;28: 1534-1541)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling

Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Met...

متن کامل

Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells.

The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined shear stress, producing a constant laminar flow (generating a shear stress of 6 dyne/cm(2)), laminar p...

متن کامل

Atheroprone hemodynamics regulate fibronectin deposition to create positive feedback that sustains endothelial inflammation.

RATIONALE The extracellular matrix protein fibronectin (FN) is focally deposited in regions of atherosclerosis, where it contributes to inflammatory signaling. OBJECTIVE To elucidate the mechanism by which FN deposition is regulated by local shear stress patterns, its dependence on platelet-endothelial cell adhesion molecule (PECAM)-1 mechanotransduction and the role this pathway plays in sus...

متن کامل

Letter by Wu et al Regarding Article, "Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites".

Letter by Wu et al Regarding Article, “Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites” To the Editor: We read with interest the recent article “Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites” in which Feng et al elegantly show that exposure of endothelial cells to mechanical low s...

متن کامل

Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice.

RATIONALE FOR STUDY MicroRNAs (miRNAs) are small noncoding RNAs that regulate protein expression at post-transcriptional level. We hypothesized that a specific pool of endothelial miRNAs could be selectively regulated by flow conditions and inflammatory signals, and as such be involved in the development of atherosclerosis. OBJECTIVE To identify miRNAs, called atheromiRs, which are selectivel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008